This paper analyzes in detail the generation of interface states ( it) and stress-induced leakage current (SILC) during channel hot electron (CHE) stress experiments in the context of a possible hydrogen/deuterium (H/D) isotope effect. Our results show that it generation is related to the hydrogen release (HR) at the Si-SiO2 interface at relatively high where a large isotope effect is found. Instead, for gate voltages ( ) favorable for hot hole injection (HHI) the it creation becomes a unique function of hole fluence and the isotope effect disappears. In the studied stress conditions, we found no experimental evidence supporting a causal relation between SILC generation and HR because no isotope effect is observed even when the corresponding it measurements reveal a very different D/H release rate. Similar to it generation, we found that SILC becomes a unique function of hole fluence at low stress . Relevant implications and extensions of these results to the Fowler-Nordheim (FN) tunneling stress conditions are discussed in the companion paper.

On Interface and Oxide Degradation in VLSI MOSFETs - Part I: Deuterium Effect in CHE Stress Regime

ESSENI, David;SELMI, Luca
2002-01-01

Abstract

This paper analyzes in detail the generation of interface states ( it) and stress-induced leakage current (SILC) during channel hot electron (CHE) stress experiments in the context of a possible hydrogen/deuterium (H/D) isotope effect. Our results show that it generation is related to the hydrogen release (HR) at the Si-SiO2 interface at relatively high where a large isotope effect is found. Instead, for gate voltages ( ) favorable for hot hole injection (HHI) the it creation becomes a unique function of hole fluence and the isotope effect disappears. In the studied stress conditions, we found no experimental evidence supporting a causal relation between SILC generation and HR because no isotope effect is observed even when the corresponding it measurements reveal a very different D/H release rate. Similar to it generation, we found that SILC becomes a unique function of hole fluence at low stress . Relevant implications and extensions of these results to the Fowler-Nordheim (FN) tunneling stress conditions are discussed in the companion paper.
File in questo prodotto:
File Dimensione Formato  
2002_02_IEEE_Esseni_InterfaceOxide_PartI.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 161.94 kB
Formato Adobe PDF
161.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/881852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 21
social impact