This work investigates the strain engineering in InAs nanowire Tunnel-FETs. To this purpose we developed a simulator based on the NEGF formalism and employing an 8×8 k·p Hamiltonian. The model accounts for arbitrary crystal orientations and describes the strain implicitly by a modification of the bandstructure. Elastic and inelastic phonon scattering is also accounted for in the self-consistent Born approximation. Our results show that appropriate strain conditions in InAs Tunnel- FETs enable: (a) a remarkable enhancement of the Ion with no significant degradation of the subthreshold slope (SS); (b) large improvements in the Ioff versus Ion tradeoff for low Ioff and VDD values; (c) significant widening of Ioff and VDD window where Tunnel-FETs can compete with silicon MOSFETs.
A simulation study of strain induced performance enhancements in InAs nanowire Tunnel-FETs
CONZATTI, Francesco;M. G. Pala;ESSENI, David;SELMI, Luca
2011-01-01
Abstract
This work investigates the strain engineering in InAs nanowire Tunnel-FETs. To this purpose we developed a simulator based on the NEGF formalism and employing an 8×8 k·p Hamiltonian. The model accounts for arbitrary crystal orientations and describes the strain implicitly by a modification of the bandstructure. Elastic and inelastic phonon scattering is also accounted for in the self-consistent Born approximation. Our results show that appropriate strain conditions in InAs Tunnel- FETs enable: (a) a remarkable enhancement of the Ion with no significant degradation of the subthreshold slope (SS); (b) large improvements in the Ioff versus Ion tradeoff for low Ioff and VDD values; (c) significant widening of Ioff and VDD window where Tunnel-FETs can compete with silicon MOSFETs.File | Dimensione | Formato | |
---|---|---|---|
CONZATTI_IEDM_2011.PDF
non disponibili
Tipologia:
Abstract
Licenza:
Non pubblico
Dimensione
563.54 kB
Formato
Adobe PDF
|
563.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.