The aim was to evaluate 2 levels of dietary inclusion of chopped whole-ear corn silage (WECS) on energy and nutrient utilization, growth, and slaughter performances of heavy pigs. Two in vivo experiments were conducted to determine digestibility and metabolic utilization of WECS using 18 barrows weighing 118 ± 8 kg BW on average, metabolic cages and respiration chambers (Exp. 1), and the effect of WECS on the growth performance and carcass traits on 42 barrows from 90 to 170 kg BW (Exp. 2). In both experiments, pigs were fed 3 experimental diets: a control diet (CON) containing cereal meals, extracted soybean meal, and wheat bran (80%, 9%, and 8% of DM, respectively) and 2 diets containing 15% (15WECS) or 30% WECS (30WECS) on a DM basis in place of wheat bran and corn meal. The diets were prepared daily by mixing the WECS to a suitable compound feed. Feed intake was always restricted to allow a daily DMI of 7.2% BW0.75 in Exp. 1 and from 8.0% to 6.5% BW0.75 in Exp. 2. Diets had similar NDF contents (15.2% to 15.8% of DM), and WECS inclusion resulted in a slight reduction in CP content (from 14.0% to 13.6% of DM) and a considerable decrease in P content (from 0.47% to 0.30% of DM). Digestibility of OM, CP, and fat was similar among diets, whereas P digestibility was lower (P < 0.05) for the 30WECS diet (33.5%) in comparison with the CON and 15WECS diets (45.5% and 44.1%, respectively). Nitrogen lost in feces and urine and N retained were not different among diets, whereas P retained decreased with the increase of WECS (5.4, 3.7, and 2.2 g/d for the CON, 15WECS, and 30WECS diets, respectively; P< 0.05). No difference among diets was observed for energy balance. The WECS contained 13.48 MJ ME and 9.39 MJ NE/kg DM. In Exp. 2, feed intake was not depressed by WECS inclusion, and the ADG for the whole experiment was not different among dietary treatments (from 737 to 774< g/d). Fecal pH was lower (P < 0.05) for the WECS diets than the control diet (7.10 and 7.00 vs. 7.40) and for the sampling at 150< kg BW than that at 130 and 110 kg BW (6.96 vs. 7.29 and 7.24). At slaughter, lean percentage in the carcass was lower in the 30WECS diet than those of the other 2 diets (46.8% vs. 48.3% and 48.6%, P = 0.05). The overall experimental data obtained in both trials indicate that substitution of wheat bran and corn meal for WECS (up to 30% of DM) does not affect, with the exception of P utilization and carcass leanness, energy and nutrient utilization and performance of heavy pigs in the last phase of growing.
Digestibility and metabolic utilization of diets containing whole-ear corn silage and their effects on growth and slaughter traits of heavy pigs
ZANFI, Cristina;MASON, Federico;SPANGHERO, Mauro
2014-01-01
Abstract
The aim was to evaluate 2 levels of dietary inclusion of chopped whole-ear corn silage (WECS) on energy and nutrient utilization, growth, and slaughter performances of heavy pigs. Two in vivo experiments were conducted to determine digestibility and metabolic utilization of WECS using 18 barrows weighing 118 ± 8 kg BW on average, metabolic cages and respiration chambers (Exp. 1), and the effect of WECS on the growth performance and carcass traits on 42 barrows from 90 to 170 kg BW (Exp. 2). In both experiments, pigs were fed 3 experimental diets: a control diet (CON) containing cereal meals, extracted soybean meal, and wheat bran (80%, 9%, and 8% of DM, respectively) and 2 diets containing 15% (15WECS) or 30% WECS (30WECS) on a DM basis in place of wheat bran and corn meal. The diets were prepared daily by mixing the WECS to a suitable compound feed. Feed intake was always restricted to allow a daily DMI of 7.2% BW0.75 in Exp. 1 and from 8.0% to 6.5% BW0.75 in Exp. 2. Diets had similar NDF contents (15.2% to 15.8% of DM), and WECS inclusion resulted in a slight reduction in CP content (from 14.0% to 13.6% of DM) and a considerable decrease in P content (from 0.47% to 0.30% of DM). Digestibility of OM, CP, and fat was similar among diets, whereas P digestibility was lower (P < 0.05) for the 30WECS diet (33.5%) in comparison with the CON and 15WECS diets (45.5% and 44.1%, respectively). Nitrogen lost in feces and urine and N retained were not different among diets, whereas P retained decreased with the increase of WECS (5.4, 3.7, and 2.2 g/d for the CON, 15WECS, and 30WECS diets, respectively; P< 0.05). No difference among diets was observed for energy balance. The WECS contained 13.48 MJ ME and 9.39 MJ NE/kg DM. In Exp. 2, feed intake was not depressed by WECS inclusion, and the ADG for the whole experiment was not different among dietary treatments (from 737 to 774< g/d). Fecal pH was lower (P < 0.05) for the WECS diets than the control diet (7.10 and 7.00 vs. 7.40) and for the sampling at 150< kg BW than that at 130 and 110 kg BW (6.96 vs. 7.29 and 7.24). At slaughter, lean percentage in the carcass was lower in the 30WECS diet than those of the other 2 diets (46.8% vs. 48.3% and 48.6%, P = 0.05). The overall experimental data obtained in both trials indicate that substitution of wheat bran and corn meal for WECS (up to 30% of DM) does not affect, with the exception of P utilization and carcass leanness, energy and nutrient utilization and performance of heavy pigs in the last phase of growing.File | Dimensione | Formato | |
---|---|---|---|
J ANIM SCI-2014-Zanfi-211-9.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
900.36 kB
Formato
Adobe PDF
|
900.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.