The possibility to valorize peach juice waste, either frozen or air-dried, through microwave (MAE) and ultrasound assisted extraction (UAE) was evaluated. MAE power, UAE amplitude and time were optimized using a 22-factorial design. For frozen waste, optimal MAE (540 W, 50 s) and UAE (23%, 120 s) processes gave extracts presenting analogous content (on 100 g dry matter) of polyphenols (309-317 mg GAE), flavonoids (94-120 mg QE), anthocyanins (8-9 mg CGE), and similar antioxidant activity (2.1-2.2 mg TE). Extracts from dried waste resulted higher in polyphenols (630-670 mg GAE) but lower in flavonoids (75-90 mg QE), anthocyanins and vitamin C (not detectable). Although developing an energy density 2-fold higher than that of UAE, MAE more efficaciously extracted vitamin C (108 mg/100 g dm) and required half extraction time (50 s). MAE would also be less impactful than UAE in terms of greenhouse gas emission and energy requirements on industrial scale. The industrial valorization of peach waste through the application of microwave and ultrasound assisted extraction requires quantitative data, able to encourage company interest and investment. This study not only identifies optimal MAE and UAE parameters to assist the extraction of peach waste bioactive compounds but also provides a preliminary estimation of the potential economic and environmental impact on an industrial scale of these technologies.

Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves

Stella Plazzotta
Primo
;
Lara Manzocco
Penultimo
;
2020-01-01

Abstract

The possibility to valorize peach juice waste, either frozen or air-dried, through microwave (MAE) and ultrasound assisted extraction (UAE) was evaluated. MAE power, UAE amplitude and time were optimized using a 22-factorial design. For frozen waste, optimal MAE (540 W, 50 s) and UAE (23%, 120 s) processes gave extracts presenting analogous content (on 100 g dry matter) of polyphenols (309-317 mg GAE), flavonoids (94-120 mg QE), anthocyanins (8-9 mg CGE), and similar antioxidant activity (2.1-2.2 mg TE). Extracts from dried waste resulted higher in polyphenols (630-670 mg GAE) but lower in flavonoids (75-90 mg QE), anthocyanins and vitamin C (not detectable). Although developing an energy density 2-fold higher than that of UAE, MAE more efficaciously extracted vitamin C (108 mg/100 g dm) and required half extraction time (50 s). MAE would also be less impactful than UAE in terms of greenhouse gas emission and energy requirements on industrial scale. The industrial valorization of peach waste through the application of microwave and ultrasound assisted extraction requires quantitative data, able to encourage company interest and investment. This study not only identifies optimal MAE and UAE parameters to assist the extraction of peach waste bioactive compounds but also provides a preliminary estimation of the potential economic and environmental impact on an industrial scale of these technologies.
File in questo prodotto:
File Dimensione Formato  
2020 Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
us mw peach published pre-proof.pdf

Open Access dal 01/01/2021

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 783.05 kB
Formato Adobe PDF
783.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1172155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? ND
social impact