Psyllium seed husk (PSH) is a soluble dietary fibre with interesting health benefits, including reduction in blood glucose level in subjects with type 2 diabetes. Its supplementation in pasta represents a challenge due to a negative impact of high PSH levels on product acceptability. The aim of this work was to investigate the effects of the substitution of semolina with different levels of PSH on cooking properties, microstructure and in vitro glycaemic response of pasta. Dry pasta samples enriched with PSH were produced by replacing durum wheat semolina with 25, 50, 75 and 100 g/kg PSH. Cooked enriched pastas were firmer and sticker than the control. Cooking loss increased with increasing PSH levels above 25 g/kg with values below the technological acceptable limit of 80 g/kg. Semolina substitution with 50-100 g/kg psyllium was effective in lowering the predictive glycaemic response of enriched pasta in comparison with the control. Scanning electron microscopy and dough rheology (dynamic frequency and temperature sweep tests) suggested that this decrease was related to the formation of fibre aggregates limiting starch swelling. Semolina replacement with 50 g/kg PSH has the potential to provide a health benefit with minimal impact on cooking features of functional pasta.

EVALUATION OF TECHNOLOGICAL PROPERTIES, MICROSTRUCTURE AND PREDICTIVE GLYCAEMIC RESPONSE OF DURUM WHEAT PASTA ENRICHED WITH PSYLLIUM SEED HUSK

Renoldi N
Primo
Investigation
;
Peressini D
Ultimo
Supervision
2021-01-01

Abstract

Psyllium seed husk (PSH) is a soluble dietary fibre with interesting health benefits, including reduction in blood glucose level in subjects with type 2 diabetes. Its supplementation in pasta represents a challenge due to a negative impact of high PSH levels on product acceptability. The aim of this work was to investigate the effects of the substitution of semolina with different levels of PSH on cooking properties, microstructure and in vitro glycaemic response of pasta. Dry pasta samples enriched with PSH were produced by replacing durum wheat semolina with 25, 50, 75 and 100 g/kg PSH. Cooked enriched pastas were firmer and sticker than the control. Cooking loss increased with increasing PSH levels above 25 g/kg with values below the technological acceptable limit of 80 g/kg. Semolina substitution with 50-100 g/kg psyllium was effective in lowering the predictive glycaemic response of enriched pasta in comparison with the control. Scanning electron microscopy and dough rheology (dynamic frequency and temperature sweep tests) suggested that this decrease was related to the formation of fibre aggregates limiting starch swelling. Semolina replacement with 50 g/kg PSH has the potential to provide a health benefit with minimal impact on cooking features of functional pasta.
File in questo prodotto:
File Dimensione Formato  
Renoldi et al LWT 2021.pdf

accesso aperto

Descrizione: Versione dell'Editore
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 12.67 MB
Formato Adobe PDF
12.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1208424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact