Noise spectroscopy is a powerful non-destructive technique to characterize the quality of gate dielectrics in MOSFETs. Trap densities are routinely extracted by fitting the 1/f part of the drain current noise spectrum with a widely known analytical expression containing several approximations within. This paper compares this 1/f noise analytical expression with microscopic simulations, evaluates its accuracy under different scenarios, and highlights when the main assumptions fall short. It is found that the expression agrees well with non-radiative multi-phonon (NMP) models at room temperature for devices featuring a thick dielectric. However, the formula fails to correctly predict the noise of nowadays aggressively scaled devices, because it neglects trapping/de-trapping with the gate electrode and the electrostatic charge scaling of the traps due to their distance from the channel.

On the accuracy of the formula used to extract trap density in MOSFETs from 1/f noise

Asanovski R.;Palestri P.;Selmi L.
2022-01-01

Abstract

Noise spectroscopy is a powerful non-destructive technique to characterize the quality of gate dielectrics in MOSFETs. Trap densities are routinely extracted by fitting the 1/f part of the drain current noise spectrum with a widely known analytical expression containing several approximations within. This paper compares this 1/f noise analytical expression with microscopic simulations, evaluates its accuracy under different scenarios, and highlights when the main assumptions fall short. It is found that the expression agrees well with non-radiative multi-phonon (NMP) models at room temperature for devices featuring a thick dielectric. However, the formula fails to correctly predict the noise of nowadays aggressively scaled devices, because it neglects trapping/de-trapping with the gate electrode and the electrostatic charge scaling of the traps due to their distance from the channel.
File in questo prodotto:
File Dimensione Formato  
asanovskiSSE2022.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 923.71 kB
Formato Adobe PDF
923.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1226181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact