Legged walking and climbing robots have recently achieved important results and developments, but they still need further improvement and study. As demonstrated by recent works, bio-mimesis can lead to important technical solutions in order to achieve efficient systems able to climb, walk, fly or swim (Saunders et al., 2006 [36], Ayers, 2001 [25], Safak and Adams, 2002 [26]). In this paper, taking into account the anatomy and the adhesive and locomotion capabilities of the spider (i.e., an eight-legged system), we present on the one hand a study of the foot force and torque distribution in different operative and slope conditions and, on the other hand, a posture evaluation by comparing different leg configurations in order to minimize the torque effort requirements.
Efficient force distribution and leg posture for a bio-inspired spider robot
GASPARETTO, Alessandro;VIDONI R.
2011-01-01
Abstract
Legged walking and climbing robots have recently achieved important results and developments, but they still need further improvement and study. As demonstrated by recent works, bio-mimesis can lead to important technical solutions in order to achieve efficient systems able to climb, walk, fly or swim (Saunders et al., 2006 [36], Ayers, 2001 [25], Safak and Adams, 2002 [26]). In this paper, taking into account the anatomy and the adhesive and locomotion capabilities of the spider (i.e., an eight-legged system), we present on the one hand a study of the foot force and torque distribution in different operative and slope conditions and, on the other hand, a posture evaluation by comparing different leg configurations in order to minimize the torque effort requirements.File | Dimensione | Formato | |
---|---|---|---|
rob_aut_sys2011.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.