This paper presents a new semianalytical model for the energy dispersion of the holes in the inversion layer of pMOS transistors. The wave vector dependence of the energy inside the 2-D subbands is described with an analytical, nonparabolic, and anisotropic expression. The procedure to extract the parameters of the model is transparent and simple, and we have used the band structure obtained with the k·p method to calibrate the model for silicon MOSFETs with different crystal orientations. The model is validated by calculating several transport-related quantities in the inversion layer of a heavily doped pMOSFET and by systematically comparing the results to the corresponding k·p calculations. Finally, we have used the newly developed band-structure model to calculate the effective mobility of pMOS transistors and compare the results with the experimental data. The overall computational complexity of our model is dramatically smaller compared to a fully numerical treatment (such as the k·p method); hence, our approach opens new possibilities for the physically based modeling of pMOS transistors.

A semi-analytical description of the Hole band structure in inversion layers for the physically based modelling of p-MOS transistors

ESSENI, David;PALESTRI, Pierpaolo;SELMI, Luca;
2007-01-01

Abstract

This paper presents a new semianalytical model for the energy dispersion of the holes in the inversion layer of pMOS transistors. The wave vector dependence of the energy inside the 2-D subbands is described with an analytical, nonparabolic, and anisotropic expression. The procedure to extract the parameters of the model is transparent and simple, and we have used the band structure obtained with the k·p method to calibrate the model for silicon MOSFETs with different crystal orientations. The model is validated by calculating several transport-related quantities in the inversion layer of a heavily doped pMOSFET and by systematically comparing the results to the corresponding k·p calculations. Finally, we have used the newly developed band-structure model to calculate the effective mobility of pMOS transistors and compare the results with the experimental data. The overall computational complexity of our model is dramatically smaller compared to a fully numerical treatment (such as the k·p method); hence, our approach opens new possibilities for the physically based modeling of pMOS transistors.
File in questo prodotto:
File Dimensione Formato  
DeMichielis_TED2007_Holes.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 356.2 kB
Formato Adobe PDF
356.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/854065
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 34
social impact