For the analysis of the most commonly encountered phthalates by gas chromatography-mass spectrometry (GC-MS), absorption of phthalates from the laboratory air on the outer wall of the syringe needle is shown to be an important contribution to the blank problems. It was investigated for programmed temperature vaporizing (PTV) injection. Cleaning of the needle in automated injection is of modest efficiency, since the needle cannot be immersed deeply enough. Two approaches were studied to minimize transfer into the column: (i) cleaning of the needle in the injector prior to splitless injection by inserting the needle in split mode while the precolumn is backflushed, which presupposes a high injector temperature to be efficient; (ii) injection under conditions minimizing thermal desorption from the needle wall, i.e. fast injection at low injector temperature (e.g. 40 °C). Both approaches resulted in blank levels of around 0.1 pg for diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP), and of around 1 pg for di(2-ethylhexyl) phthalate (DEHP). They could be useful tools in existing or future methods for the analysis of phthalates or other compounds causing blank problems through contamination of the laboratory air.

Phthalate analysis by gas chromatography-mass spectrometry: blank problems related to the syringe needle

Marega, Milena;Moret, Sabrina;Conte, Lanfranco
2013-01-01

Abstract

For the analysis of the most commonly encountered phthalates by gas chromatography-mass spectrometry (GC-MS), absorption of phthalates from the laboratory air on the outer wall of the syringe needle is shown to be an important contribution to the blank problems. It was investigated for programmed temperature vaporizing (PTV) injection. Cleaning of the needle in automated injection is of modest efficiency, since the needle cannot be immersed deeply enough. Two approaches were studied to minimize transfer into the column: (i) cleaning of the needle in the injector prior to splitless injection by inserting the needle in split mode while the precolumn is backflushed, which presupposes a high injector temperature to be efficient; (ii) injection under conditions minimizing thermal desorption from the needle wall, i.e. fast injection at low injector temperature (e.g. 40 °C). Both approaches resulted in blank levels of around 0.1 pg for diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP), and of around 1 pg for di(2-ethylhexyl) phthalate (DEHP). They could be useful tools in existing or future methods for the analysis of phthalates or other compounds causing blank problems through contamination of the laboratory air.
File in questo prodotto:
File Dimensione Formato  
CHROMA353856.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 611.58 kB
Formato Adobe PDF
611.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/881085
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 45
social impact