Apart from the controversial positive effects of moderate wine consumption on human health, wine antioxidant capacity plays a key role in winemaking technology. From juice extraction to bottle storage, oxygen management is one of the most critical points for making quality wines. In the past, the protection of juice and wine from oxidations was based on the sole use of sulfur dioxide; more recently, the toxicity and the allergenic potential of this additive, together with the increased knowledge on wine oxidation mechanisms, have given rise to new biotechnological approaches and producing trends, leading to a significant reduction of sulfites in winemaking. The aim of this paper is to review the oxidation mechanisms of grape juice and wine and to discuss the opportunities to reduce as much as possible sulfur dioxide addition by a proper management of alcoholic and malolactic fermentation and by the supplementation of some important yeast nutritional factors (e.g., thiamine). The use of natural antioxidants complementing the activity of sulfites (i.e., ascorbic acid, glutathione, yeast lees, and yeast derivatives) is also discussed

Biotechnological Strategies for Controlling Wine Oxidation

COMUZZO, Piergiorgio;ZIRONI, Roberto
2013-01-01

Abstract

Apart from the controversial positive effects of moderate wine consumption on human health, wine antioxidant capacity plays a key role in winemaking technology. From juice extraction to bottle storage, oxygen management is one of the most critical points for making quality wines. In the past, the protection of juice and wine from oxidations was based on the sole use of sulfur dioxide; more recently, the toxicity and the allergenic potential of this additive, together with the increased knowledge on wine oxidation mechanisms, have given rise to new biotechnological approaches and producing trends, leading to a significant reduction of sulfites in winemaking. The aim of this paper is to review the oxidation mechanisms of grape juice and wine and to discuss the opportunities to reduce as much as possible sulfur dioxide addition by a proper management of alcoholic and malolactic fermentation and by the supplementation of some important yeast nutritional factors (e.g., thiamine). The use of natural antioxidants complementing the activity of sulfites (i.e., ascorbic acid, glutathione, yeast lees, and yeast derivatives) is also discussed
File in questo prodotto:
File Dimensione Formato  
Food Eng. Rev_SO2_2013.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 797.78 kB
Formato Adobe PDF
797.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/897342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact