Mobility in high-k/metal-gate Ultra-Thin Body and Box Fully Depleted SOI devices has been extensively investigated by means of multi-scale simulations and experimental data. Split-CV mobility measurements have been performed for various Interfacial Layer Equivalent Oxide Thickness allowing an investigation of the physical mechanisms responsible for the mobility degradation at high-k/Interfacial layer interface. The impact of the back bias on transport properties is investigated and mobility enhancement in the reverse regime (back gate inversion) is studied. A multi-scale simulation strategy is ranging from quantum Non-equilibrium Green’s Functions to semi-classical Kubo Greenwood approach. These advanced solvers made possible a throughout calibration of empirical TCAD mobility models.

Multi-scale strategy for high-k/metal-gate UTBB-FDSOI devices modeling with emphasis on back bias impact on mobility

NIER, OLIVER;PALESTRI, Pierpaolo;ESSENI, David;SELMI, Luca
2013-01-01

Abstract

Mobility in high-k/metal-gate Ultra-Thin Body and Box Fully Depleted SOI devices has been extensively investigated by means of multi-scale simulations and experimental data. Split-CV mobility measurements have been performed for various Interfacial Layer Equivalent Oxide Thickness allowing an investigation of the physical mechanisms responsible for the mobility degradation at high-k/Interfacial layer interface. The impact of the back bias on transport properties is investigated and mobility enhancement in the reverse regime (back gate inversion) is studied. A multi-scale simulation strategy is ranging from quantum Non-equilibrium Green’s Functions to semi-classical Kubo Greenwood approach. These advanced solvers made possible a throughout calibration of empirical TCAD mobility models.
File in questo prodotto:
File Dimensione Formato  
Nier_JCE2013.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 789.44 kB
Formato Adobe PDF
789.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/905341
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact