Mobility in high-k/metal-gate Ultra-Thin Body and Box Fully Depleted SOI devices has been extensively investigated by means of multi-scale simulations and experimental data. Split-CV mobility measurements have been performed for various Interfacial Layer Equivalent Oxide Thickness allowing an investigation of the physical mechanisms responsible for the mobility degradation at high-k/Interfacial layer interface. The impact of the back bias on transport properties is investigated and mobility enhancement in the reverse regime (back gate inversion) is studied. A multi-scale simulation strategy is ranging from quantum Non-equilibrium Green’s Functions to semi-classical Kubo Greenwood approach. These advanced solvers made possible a throughout calibration of empirical TCAD mobility models.
Multi-scale strategy for high-k/metal-gate UTBB-FDSOI devices modeling with emphasis on back bias impact on mobility
NIER, OLIVER;PALESTRI, Pierpaolo;ESSENI, David;SELMI, Luca
2013-01-01
Abstract
Mobility in high-k/metal-gate Ultra-Thin Body and Box Fully Depleted SOI devices has been extensively investigated by means of multi-scale simulations and experimental data. Split-CV mobility measurements have been performed for various Interfacial Layer Equivalent Oxide Thickness allowing an investigation of the physical mechanisms responsible for the mobility degradation at high-k/Interfacial layer interface. The impact of the back bias on transport properties is investigated and mobility enhancement in the reverse regime (back gate inversion) is studied. A multi-scale simulation strategy is ranging from quantum Non-equilibrium Green’s Functions to semi-classical Kubo Greenwood approach. These advanced solvers made possible a throughout calibration of empirical TCAD mobility models.File | Dimensione | Formato | |
---|---|---|---|
Nier_JCE2013.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
789.44 kB
Formato
Adobe PDF
|
789.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.