We present a study about of the essential physical elements governing the OFF-state current in MOSFETs and tunnel FETs at truly nanoscale dimensions. By combining semianalytical models and full-quantum self-consistent simulations, we discuss the physical mechanisms responsible of the minimum OFF-current and of the ambipolarity of the current transfer characteristics. Moreover, we revisit the applicability of the natural transistor length as a metric for the shortchannel effects and assess the tunnel FETs potential to provide subthreshold swings below 60 mV/decade and better than their MOSFET counterparts for gate lengths approaching 10 nm.

Essential Physics of the OFF-State Current in Nanoscale MOSFETs and Tunnel FETs

ESSENI, David;Pala, M. G.;ROLLO, TOMMASO
2015-01-01

Abstract

We present a study about of the essential physical elements governing the OFF-state current in MOSFETs and tunnel FETs at truly nanoscale dimensions. By combining semianalytical models and full-quantum self-consistent simulations, we discuss the physical mechanisms responsible of the minimum OFF-current and of the ambipolarity of the current transfer characteristics. Moreover, we revisit the applicability of the natural transistor length as a metric for the shortchannel effects and assess the tunnel FETs potential to provide subthreshold swings below 60 mV/decade and better than their MOSFET counterparts for gate lengths approaching 10 nm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1070653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 33
social impact