Polyolefin oligomeric hydrocarbons (POH) are non-intentionally added substances (NIAS) which mainly reside in the polymer (PE, PP) as a consequence of the polymerization process, and that under favorable conditions (high fat content, high temperature, and long contact time) may migrate at high amount from the packaging into the food. The food industry offers a wide range of ready-to-eat products, among these, vegetable soups designed to be stored at refrigeration temperature (for times around 6 weeks), and in most cases to be heated for a few minutes in a microwave oven (into the original container, mostly of PP) before consumption. The present work aimed to study for the first-time migration of POH during the shelf life of these products, including storage at refrigeration temperature and after microwave heating. On-line high-performance liquid chromatography (HPLC)-gas chromatography (GC), followed by flame ionization detection (FID), was applied for POH analysis in a number of ready-to-eat products purchased from the Italian market. Microwave heating determined a variable POH increase ranging from 0.1 to 6.2 mg/kg. Parameters possibly affecting migration such as fat content and heating time were also studied.
Migration of polypropylene oligomers into ready-to-eat vegetable soups
Conchione C.
;Lucci P.;Moret S.
2020-01-01
Abstract
Polyolefin oligomeric hydrocarbons (POH) are non-intentionally added substances (NIAS) which mainly reside in the polymer (PE, PP) as a consequence of the polymerization process, and that under favorable conditions (high fat content, high temperature, and long contact time) may migrate at high amount from the packaging into the food. The food industry offers a wide range of ready-to-eat products, among these, vegetable soups designed to be stored at refrigeration temperature (for times around 6 weeks), and in most cases to be heated for a few minutes in a microwave oven (into the original container, mostly of PP) before consumption. The present work aimed to study for the first-time migration of POH during the shelf life of these products, including storage at refrigeration temperature and after microwave heating. On-line high-performance liquid chromatography (HPLC)-gas chromatography (GC), followed by flame ionization detection (FID), was applied for POH analysis in a number of ready-to-eat products purchased from the Italian market. Microwave heating determined a variable POH increase ranging from 0.1 to 6.2 mg/kg. Parameters possibly affecting migration such as fat content and heating time were also studied.File | Dimensione | Formato | |
---|---|---|---|
foods-09-01365-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.95 MB
Formato
Adobe PDF
|
2.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.