Extra virgin olive oil (EVOO) was gelled with 10% monoglycerides, (MG), rice wax (RW), γ-oryzanol, and β-sitosterol (PS), or ethylcellulose (EC). The oleogel structure and the stability of bioactive compounds were investigated during storage up to 120 days at 20, 30, and 40 ◦C. All samples were self-standing but presented different structures. PS produced the firmest gel, whereas EC caused the lowest firmness and rheological values. Structural properties did not change during storage, except for EC oleogel. Structuring triggered a depletion in phenolic content and α-tocopherol, which was more pronounced when a higher temperature was required for oleogel preparation (MG ~ RW < PS < EC). However, during storage phenolics and α-tocopherol decreased following zero-order kinetics with a higher susceptibility in unstructured oil, suggesting in all cases a protective effect of the gel network.

Oleogelation of extra virgin olive oil by different oleogelators affects the physical properties and the stability of bioactive compounds

Marilisa Alongi
Primo
;
Paolo Lucci;Sonia Calligaris
Ultimo
2022-01-01

Abstract

Extra virgin olive oil (EVOO) was gelled with 10% monoglycerides, (MG), rice wax (RW), γ-oryzanol, and β-sitosterol (PS), or ethylcellulose (EC). The oleogel structure and the stability of bioactive compounds were investigated during storage up to 120 days at 20, 30, and 40 ◦C. All samples were self-standing but presented different structures. PS produced the firmest gel, whereas EC caused the lowest firmness and rheological values. Structural properties did not change during storage, except for EC oleogel. Structuring triggered a depletion in phenolic content and α-tocopherol, which was more pronounced when a higher temperature was required for oleogel preparation (MG ~ RW < PS < EC). However, during storage phenolics and α-tocopherol decreased following zero-order kinetics with a higher susceptibility in unstructured oil, suggesting in all cases a protective effect of the gel network.
File in questo prodotto:
File Dimensione Formato  
FOODCHEM-S-21-02655.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Non pubblico
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1210064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact