While formulating a probiotic food, it is mandatory to make sure that the viability of probiotics is adequate at the point of consumption, which can be strongly compromised by stressful conditions due to low pH and high osmolarity. In this study, three probiotic lactobacilli were subjected to different pre-adaptation conditions, and the turbidimetric growth kinetics in challenging conditions (pH 4.0–6.5, NaCl 1–7%, sucrose 0.1–0.7 M) were evaluated. Different effects were observed for Lactobacillus acidophilus, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. Indeed, pre-exposition to sub-optimal conditions in terms of pH and % NaCl significantly improved the ability of L. acidophilus and L. casei to overcome the osmotic stress due to salt or sucrose, and similar effects were observed for acidic stress. L. plantarum showed to be more tolerant to the challenging conditions applied in this study. Anyway, the pre-adaptation at conditions SUB_1 (pH 4.5 and NaCl 4%) and SUB_2 (pH 5 and NaCl 2%) speeded-up its growth kinetics by reducing the length of the lag phase under sucrose stress and enhancing the maximum growth rate at the highest pH tested. Moreover, an improvement in biomass amount was observed under sucrose stress. The whole data evidenced that the application of the appropriate pre-adaptation condition could contribute to making probiotics more robust towards challenging conditions due to food matrix, processing, and storage as well as gastrointestinal transit. Further studies will be necessary to gain insight into the proteomics and metabolomics responsible for increased tolerance to stressful conditions.

Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions

Giulia Bisson
Primo
;
Michela Maifreni
Secondo
;
Nadia Innocente
Penultimo
;
Marilena Marino
Ultimo
2023-01-01

Abstract

While formulating a probiotic food, it is mandatory to make sure that the viability of probiotics is adequate at the point of consumption, which can be strongly compromised by stressful conditions due to low pH and high osmolarity. In this study, three probiotic lactobacilli were subjected to different pre-adaptation conditions, and the turbidimetric growth kinetics in challenging conditions (pH 4.0–6.5, NaCl 1–7%, sucrose 0.1–0.7 M) were evaluated. Different effects were observed for Lactobacillus acidophilus, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. Indeed, pre-exposition to sub-optimal conditions in terms of pH and % NaCl significantly improved the ability of L. acidophilus and L. casei to overcome the osmotic stress due to salt or sucrose, and similar effects were observed for acidic stress. L. plantarum showed to be more tolerant to the challenging conditions applied in this study. Anyway, the pre-adaptation at conditions SUB_1 (pH 4.5 and NaCl 4%) and SUB_2 (pH 5 and NaCl 2%) speeded-up its growth kinetics by reducing the length of the lag phase under sucrose stress and enhancing the maximum growth rate at the highest pH tested. Moreover, an improvement in biomass amount was observed under sucrose stress. The whole data evidenced that the application of the appropriate pre-adaptation condition could contribute to making probiotics more robust towards challenging conditions due to food matrix, processing, and storage as well as gastrointestinal transit. Further studies will be necessary to gain insight into the proteomics and metabolomics responsible for increased tolerance to stressful conditions.
File in questo prodotto:
File Dimensione Formato  
Bisson_Application of pre-adaptation_2023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 302.48 kB
Formato Adobe PDF
302.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1241124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact