The microbial community in milk is of great importance in the manufacture of traditional cheeses produced using raw milk and natural cultures. During milk curdling and cheese ripening, complex interactions occur in the microbial community, and accurate identification of the microorganisms involved provides essential information for understanding their role in these processes and in flavor production. Recent improvements in molecular biological methods have led to their application to food matrices, and thereby opened new perspectives for the study of microbial communities in fermented foods. In this study, a description of microbial community composition during the manufacture and ripening of Montasio cheese was provided. A combined approach using culture-dependent and -independent methods was applied. Culturedependent identification was compared with 16S clone libraries sequencing data obtained from both DNA and reverse-transcribed RNA (cDNA) amplification and real-time quantitative PCR (qPCR) assays developed to detect and quantify specific bacterial species/genera (Streptococcus thermophilus, Lactobacillus casei, Pediococcus pentosaceus, Enterococcus spp., Pseudomonas spp.). S. thermophilus was the predominant LAB species throughout the entire ripening period of Montasio cheese. The culture-independent method demonstrates the relevant presence of Pseudomonas spp. and Lactococcus piscium at the beginning of ripening. The culture-dependent approach and the two culture-independent approaches produced complementary information, together generating a general view of cheese microbial ecology.

Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing

MAIFRENI, Michela;BARTOLOMEOLI, Ingrid;FRIGO, Francesca;MARINO, Marilena;
2011-01-01

Abstract

The microbial community in milk is of great importance in the manufacture of traditional cheeses produced using raw milk and natural cultures. During milk curdling and cheese ripening, complex interactions occur in the microbial community, and accurate identification of the microorganisms involved provides essential information for understanding their role in these processes and in flavor production. Recent improvements in molecular biological methods have led to their application to food matrices, and thereby opened new perspectives for the study of microbial communities in fermented foods. In this study, a description of microbial community composition during the manufacture and ripening of Montasio cheese was provided. A combined approach using culture-dependent and -independent methods was applied. Culturedependent identification was compared with 16S clone libraries sequencing data obtained from both DNA and reverse-transcribed RNA (cDNA) amplification and real-time quantitative PCR (qPCR) assays developed to detect and quantify specific bacterial species/genera (Streptococcus thermophilus, Lactobacillus casei, Pediococcus pentosaceus, Enterococcus spp., Pseudomonas spp.). S. thermophilus was the predominant LAB species throughout the entire ripening period of Montasio cheese. The culture-independent method demonstrates the relevant presence of Pseudomonas spp. and Lactococcus piscium at the beginning of ripening. The culture-dependent approach and the two culture-independent approaches produced complementary information, together generating a general view of cheese microbial ecology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/879737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 107
  • ???jsp.display-item.citation.isi??? 98
social impact