Fruit derivatives are commonly obtained by applying processing operations deemed responsible for the loss of phenol compounds, but very little information is available on the fate of phenols upon digestion of these products. The present study evaluated the effect of thermal and mechanical treatments, commonly applied to turn apple pulp into puree and homogenate, on phenolic bioaccessibility and antioxidant activity. Despite a 20 % decrease in polyphenols due to processing, their bioaccessibility was higher in apple derivatives (>20 %) compared to pulp (∼2 %). Polyphenol oxidase (PPO), inactivated by thermal treatments in apple derivatives but not in the pulp, was hypothesized to be responsible for this difference. Results acquired on an unprocessed PPO-free apple model, only featuring quercetin-3-glucoside and pectin, actually exhibited similar bioaccessibility as processed derivatives. The radical scavenging capacity was unaffected by the structural integrity of apples, indicating independence from the plant tissue's hierarchical arrangement. After digestion, radical scavenging capacity decreased in the real apple matrices, correlating with phenolic content, while it was retained in the apple model, further suggesting the pivotal food matrix role in modulating polyphenols bioaccessibility and subsequent biological activity. Translating these results to an industrial scale, processing conditions can be optimized not only to guarantee that the quality requirements are met, but also to achieve desired nutritional benefits.
The role of processing on phenolic bioaccessibility and antioxidant capacity of apple derivatives
Alongi, Marilisa;Lanza, Umberto;Gorassini, Andrea;Verardo, Giancarlo;Comuzzi, Clara;Anese, Monica;Manzocco, Lara
;Nicoli, Maria Cristina
2024-01-01
Abstract
Fruit derivatives are commonly obtained by applying processing operations deemed responsible for the loss of phenol compounds, but very little information is available on the fate of phenols upon digestion of these products. The present study evaluated the effect of thermal and mechanical treatments, commonly applied to turn apple pulp into puree and homogenate, on phenolic bioaccessibility and antioxidant activity. Despite a 20 % decrease in polyphenols due to processing, their bioaccessibility was higher in apple derivatives (>20 %) compared to pulp (∼2 %). Polyphenol oxidase (PPO), inactivated by thermal treatments in apple derivatives but not in the pulp, was hypothesized to be responsible for this difference. Results acquired on an unprocessed PPO-free apple model, only featuring quercetin-3-glucoside and pectin, actually exhibited similar bioaccessibility as processed derivatives. The radical scavenging capacity was unaffected by the structural integrity of apples, indicating independence from the plant tissue's hierarchical arrangement. After digestion, radical scavenging capacity decreased in the real apple matrices, correlating with phenolic content, while it was retained in the apple model, further suggesting the pivotal food matrix role in modulating polyphenols bioaccessibility and subsequent biological activity. Translating these results to an industrial scale, processing conditions can be optimized not only to guarantee that the quality requirements are met, but also to achieve desired nutritional benefits.File | Dimensione | Formato | |
---|---|---|---|
2024 (Apple phenolic bac)_FC_463_141402_1-10.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.