A new characterization technique and an improved model for charge injection and transport through ONO gate stacks are used to investigate the program/retention sequence of silicon nitride-based (SONOS/TANOS) nonvolatile memories. The model accounts for drift-diffusion transport in the conduction band of silicon nitride (SiN). A priori assumptions on the spatial distribution of the charge at the beginning of the program/retention operations are not needed. We show that the carrier transport in the SiN layer impacts the spatial distribution of the trapped charge and, consequently, several aspects of program and retention transients. A few model improvements allow us to reconcile the apparent discrepancy between the values of silicon nitride trap energies extracted from program and retention experiments, thus reducing the number of model parameters.
Experimental and Simulation Analysis of Program/Retention Transients in Silicon Nitride-Based NVM Cells
VIANELLO, Elisa;DRIUSSI, Francesco;ARREGHINI, Antonio;PALESTRI, Pierpaolo;ESSENI, David;SELMI, Luca;
2009-01-01
Abstract
A new characterization technique and an improved model for charge injection and transport through ONO gate stacks are used to investigate the program/retention sequence of silicon nitride-based (SONOS/TANOS) nonvolatile memories. The model accounts for drift-diffusion transport in the conduction band of silicon nitride (SiN). A priori assumptions on the spatial distribution of the charge at the beginning of the program/retention operations are not needed. We show that the carrier transport in the SiN layer impacts the spatial distribution of the trapped charge and, consequently, several aspects of program and retention transients. A few model improvements allow us to reconcile the apparent discrepancy between the values of silicon nitride trap energies extracted from program and retention experiments, thus reducing the number of model parameters.File | Dimensione | Formato | |
---|---|---|---|
05184881.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
416.2 kB
Formato
Adobe PDF
|
416.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.